Comparing Template-based, Feature-based and Supervised Classification of Facial Expressions from Static Images
نویسندگان
چکیده
We compare the performance and generalization capabilities of different low-dimensional representations for facial emotion classification from static face images showing happy, angry, sad, and neutral expressions. Three general strategies are compared: The first approach uses the average face for each class as a generic template and classifies the individual facial expressions according to the best match of each template. The second strategy uses a multi-layered perceptron trained with the backpropagation of error algorithm on a subset of all facial expressions and subsequently tested on unseen face images. The third approach introduces a preprocessing step prior to the learning of an internal representation by the perceptron. The feature extraction stage computes the oriented response to six odd-symmetric and six even-symmetric Gabor-filters at each pixel position in the image. The template-based approach reached up to 75% correct classification, which corresponds to the correct recognition of three out of four expressions. However, the generalization performance only reached about 50%. The multi-layered perceptron trained on the raw face images almost always reached a classification performance of 100% on the test-set, but the generalization performance on new images varied from 40% to 80% correct recognition, depending on the choice of the test images. The introduction of the preprocessing stage was not able to improve the generalization performance but slowed down the learning by a factor of ten. We conclude, that a template-based approach for emotion classification from static images has only very limited recognition and generalization capabilities. This poor performance can be attributed to the smoothing of facial detail caused by small misalignments of the faces and the large inter-personal differences of facial expressions exposed in the data set. Although the nonlinear extraction of appropriate key features from facial expressions by the multi-layered perceptron is able to maximize classification performance, the generalization performance usually reaches only 60%. Key-Words: facial analysis, emotion recognition, static face images, MLP CSCC'99 Proc.Pages:5331-5336
منابع مشابه
Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999